Homework Examples 6

Chris Castillo

November 2021

$1 \quad$ Page 409

1)
2)

For questions 3 and 5 I plugged in the equation the question gave me into DESMOS and got that graph.

2 Page 410

13) Amplitude $=2$

Midline $=\mathrm{y}=4$
Period $=2$ pi $/ 3$
Horizontal Shift $=21$
15) Amplitude $=1$

Midline $=\mathrm{y}=-3$
Period $=12$ pi
Horizontal Shift $=$ pi
For the questions 13 and 15 I used the equations they gave us to break it down and and solve for each part of the question.

3 Page 411

21) $\mathrm{D}(\mathrm{t})=50-7 \sin (\mathrm{pi} / 12 \mathrm{t})$

For question 21 I used the information they gave us to construct a graph and after doing the graph I found the amplitude, midline and period to construct the equation.
23) a) Period $=10$ minutes, Amplitude $=12.5$ meters, Midline $=y=13.5$ meters
b) $h(t)=-12.5 \cos (2 \mathrm{pi} / 10 \mathrm{t})+13.5$

Figure 1: Page 4091

Figure 2: Page 4093
c) $\mathrm{t}=5 \mathrm{~h}(5)=-12.5 \cos (2 \mathrm{pi} / 10(5))+13.5=26$ meters

This question I had trouble in but I started by finding the period and than using the facts the question gave us to answer the question. I used the formula the question asked to use.

$4 \quad$ Page 419

5) Period $=\mathrm{pi} / 4$, Horizontal Shift $=8$ units to the right

I found these answers by using the equation they gave which is $f(x)=2 \tan (4 x-32)$ and the period is pi/4 and the Horizontal shift is $32 / 4=8$.
9) Period $=6$, Horizontal Shift $=3$ units to the left

For this question I used the same thing I did for the last question by using the equation they gave us and found everything.

5 Page 420

15)

6 Page 421

23) $\sec (-x)=-\sec x=-2$
24) $\csc (-x)=\csc x=5$
25) $\csc (-x)=\csc x=5$

For these three questions I did the same thing to answer them. To begin this question you have to know what a sec and csc is. For example, sec is $1 / \cos$ and csc is $1 / \sin$.

$7 \quad$ Page 429

1) $=\mathrm{pi} / 4$
2) $=-\mathrm{pi} / 3$
3) $=\sin -1(\sqrt{2} / 2)=\mathrm{pi} / 4$
4) $=\cos (x)=1 / \sqrt{17}$

In these four questions I expressed all the following equations and put it into

Figure 3: Page 42015
radians from the equation. I did this by using the notes they showed in the chapter in the book.

$8 \quad$ Page 440

3) $\theta=\mathrm{pi} / 3$
$\theta=5 \mathrm{pi} / 3$
4) $\theta=\mathrm{pi} / 2$
$\theta=3 \mathrm{pi} / 2$
5) $\cos (\theta)=\sqrt{2} / 2$
6) $\sin (\theta)=-1 / 2$
7) $\sin (3 \theta)=-\sqrt{2} / 2$
8) $\cos (3 \theta)=\sqrt{2} / 2$

ForthesequestionsIsolvedforeachequationtheygaveusandusedthenotestheygaveusinthechapter.
35) $x=0.7381$ or $x=1.3563$
37) $x=0.9291$ or $x=3.0709$

ForthesetwoquestionsIsolvedtheequation forthe firsttwopositiveanswersthatI figuredoutwatchingthechapte

$9 \quad$ Page 448

7) $\mathrm{D}(\mathrm{t})=-13 \cos (\mathrm{pi} / 12(\mathrm{t}-5))+50$

For this question I found the amplitude which is 13 and the midline which is 50 and the horizontal stretch factor which is pi/12 and finally the horizontal shift which is equal to -5 and with these numbers I put together the equation.
9) $P(\mathrm{t})=-25 \cos (\mathrm{pi} / 6(\mathrm{t}-3))+129$

I figured this question out by doing the same thing I did in the last question by finding the midline which is 129 and the amplitude which is 25 and the horizontal stretch factor which is pi/6 and than put together the equation.

$10 \quad$ Page 449

11) a) $\mathrm{D}(\mathrm{t})=20 \cos (\mathrm{pi} / 12(\mathrm{t}-17))+85$
b) The temperature at 9 AM was 75 degrees.

For this question I found all the important points and made the equation and than plugged in the numbers to find out that at 9 am at 75 degrees.
13) a) $\mathrm{D}(\mathrm{t})=8 \sin (\mathrm{pi} / 12(\mathrm{t}-10))+55$
b) The first time the temperature reaches 51 degrees is at 8 am which is 8 hours past midnight.

For this question I found all the points just like last question to make the equation and than with the equation I plugged in the number to find when the temperature first reaches 51 degrees like I did for last question.

