Homework Examples 4

Christopher Castillo

October 18-29

1 Page 263

7) $\mathrm{P}(\mathrm{t})=11,000(1.085)^{t}$

This question was not hard this is because of the videos I watched and I also used the exponential function to write the a exponential model of the population.

2 Page 264

13) $\mathrm{f}(\mathrm{x})=1(5)^{x}$

For this question I went back in the textbook to find an example of this question and found one and used it as reference to answer this and I found it helpful.

3 Page 276

23) $f(x)=-5\left(4^{x}\right)-1$

As $\mathrm{x}->$ oo, $\mathrm{f}(\mathrm{x})->-$ oo
As $x->-00, f(x)->-00$
I found this question tricky but I found a video on Youtube explaining the video so after that I plugged in the equation into Desmos and think I answered it correctly.
25) $\mathrm{f}(\mathrm{x})=3(1 / 2)^{x}-2$

As $\mathrm{x}->$ oo, $\mathrm{f}(\mathrm{x})->$ оо
As $\mathrm{x}->-\mathrm{oo}, \mathrm{f}(\mathrm{x})->$ oo
I also found this video tricky but with the same method I used to answer question 23 I did the same for this one.

Figure 1: Page 27511

4 Page 275

11) $f(x)=2^{-x}$
12) $f(x)=4^{x}+4$

I did not have trouble with this question I just added the 4 to the equation.

5 Page 264

23) 33.58 mg

I figured out this question by looking back in the textbook for a similar question
and trying to figure it out using the exponential formula. I had trouble with this question.

$6 \quad$ Page 287

3) $a^{c}=b$

This question was easy to me after I watched the video on the website it explained very well and I understood. All you had to do was turn the log into exponential form.
9) $\log 4 y=x$

This question I found easy also all you had to do was turn it from exponential for to logarithmic form.
17) $\log 3(\mathrm{x})=2->3^{2}=9->\mathrm{x}=9$

This question was tricky but I watched a video and it explained what you have to do and I figured it out.
41) $5^{x}=14->\log 5(14)=\mathrm{x}->\mathrm{x}=1.639$

This question I found hard and it took me some time to figure it out but after I watched a video on how to find the x in \log form I understood.
43) $7^{x}=1 / 15->\log 7(1 / 15)=\mathrm{x}->\log 7(15)=\mathrm{x}->\mathrm{x}=1.391$

For this question I put the starting equation in logarithmic form and solved x from there this question was tricky until I watched a video.

$7 \quad$ Page 288

65) If the trend continues the population will exceed 45 million in the year 2014. (5 years)

This question was easy in my opinion if I answered it correctly all I did was put it in $\mathrm{f}(\mathrm{t})=\mathrm{ab}^{t}$ and then plugged in $1,2,3,4,5$ until the answer exceeded 45.

$8 \quad$ Page 298

3) $\log 3(7)$

This question I had trouble with and I still do not understand it so I looked at the solutions manual and looked it up to help me understand.
17) $15 \log 10(\mathrm{x})+13 \log 10(\mathrm{y})-19 \log 10(\mathrm{z})$

This question I do not understand so I looked it up and I am not sure if I answered it correctly but I tried.

$9 \quad$ Page 299

27) $x=-0.716575$

For this question I looked it up for reference on how to do it and think I figured it out. I was having trouble with it though.

10 Page 306

1) Domain: $x>5$

Vertical Asymptote: $\mathrm{x}=5$
I got this answer by watching the video on the website for reference and figured it out. This question was not very difficult.
7) Domain: $x ; 0$

Vertical Asymptote: $\mathrm{x}=0$
For this question I was not very sure it was tricky but I tried and this is what I got not sure if it is correct.
13)
15)

11 Page 322

3) There are 129.3 mg remaining after 1000 years.

I got this answer by watching the video on the website as reference and then I tried it and that is how I got this answer. This question was tricky at first but now I got it.
9) 422.169 years ago

This question was very tricky and I thought I was doing it right but when I

Figure 2: Page 30613

Figure 3: Page 30615
checked the answer on the solutions manual I got the wrong answer so I do not know what I did wrong.

12 Page 323

11) $\mathrm{P}(120)=24,000$
$\mathrm{P}(100)=15,119$
I got this answer by looking at the videos on the website but these are the wrong answers and I do not know where I went wrong and I need help with these.
12) It will take 54 hours for the number of crystals to double.

I got this answer by plugging in numbers to the equation until the number of crystals doubled and that is how I figured out that it will take 54 hours for the crystals to double.

13 Page 325

29) $63,095.7$

I got this answer with my tutor I found it tricky and we followed the formula of $M=2 / 3 \log (S / S 0)$.
31) $\mathrm{S}=5.8167$

I had help from a tutor also with this problem we used the same formula as question 29 to answer this question it was not so tricky as the last one.
33) a) $1,640,670$
b) 1.4 hours
c) No, they are both equal to each other.
d) No, they should not worry.

I also had help from a tutor with this question I had trouble with it but I finally understood it when we we used formulas to answer it.

$14 \quad$ Page 327

39) 31.5 days

I also figures this question out with a tutor and we used the formulas for the given problem and figures it out.

15 Page 335

9) $y(x)=776.25(1.426)^{x}$

For this question I watched the videos to figure this out. This question was tricky at first but with the videos helped.
11) $y(x)=724.44(.738)^{x}$

I used videos to figure this question out it was also tricky but I figured it out.
13) a) $y=54.954(1.054)^{x}$
b) 204.65 billion in expenditures

I had a lot of trouble with this question and I watched the videos and kind of figured it out but I looked at the solution manual.
15) 11.128 cents per kilowatt hour

For this question I found it tricky and tried using the videos so I tried it and ended up using the solutions manual also.

